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Abstract— Identifying gene mutation is essential to prognosis
and therapeutic decisions for acute myeloid leukemia (AML)
but the current gene analysis is inefficient and non-scalable.
Pathological images are readily accessible and can be
effectively modeled using deep learning. This work aims at
predicting gene mutation directly by modeling bone marrow
smear images. Traditionally, bone marrow smear slides are
cropped into patches with manual segmentation for patch-
level modeling. Slide-level modeling, such as multi-instance
learning, could aggregate patches for holistic modeling,
though suffer from excessive redundancy. In this study, we
propose a discriminative multi-instance approach to select
useful patches in a coarse-to-fine process. Specifically, we
preprocess a slide into patches by using a trained pre-selector
network. Then, we rule out low quality patches in the coarse
selection with known prior knowledge, and refine the model
using gene-discriminative patches in the fine selection. We
evaluate the framework for CEBPA, FLT3, and NPM1 gene
mutation prediction and obtain 71.67%, 56.26%, and 56.34%
F1-score. Further analysis show the effect of different selection
criteria on prediction gene mutations using pathological images.

Clinical relevance— This study makes the gene mutation pre-
dictable (better than hematologists) from pathological images
for AML to improve clinical availability of gene information.

I. INTRODUCTION

Acute myeloid leukemia (AML) is a genetically hetero-
geneous clonal malignancy which stops bone marrow cells
from maturing and leads to serious hematopoietic failure.
The current clinical treatment guideline still results in higher
than 50 percent of unsatisfactory relapse and mortality rate.
Researchers globally are continuously seeking factors to help
determine effective therapeutic strategies. Genetic analysis
has been suggested in the leukemia diagnosis and risk
stratification guideline from the World Health Organiza-
tion (WHO) [1]. For example, FMS-like tyrosine kinase 3
(FLT3) gene is enlisted as a factor for poor prognosis while
CCAAT/enhancer binding protein alpha (CEBPA) would
suggest a favorable prognosis outcome [2]. However, current
gene mutation analyses instrument while exists, it remains
costly and rare that hinders scalable and efficient use of gene
information for clinical decision-making.

The advancement of deep learning for digital pathology
has significantly reduced interpretation efforts for gigabyte-
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sized biopsy slides. Notably, leukemia classification using
blood smear images improved clinical efficiency for diagno-
sis by accelerating cell counts and interpretation procedure
[3]. A recent study has found that using a deep learning
approach can discriminate specific gene mutations using
bone marrow smear pathological images [4]. This work is
an exciting advancement since even experienced pathologists
are not able to identify the morphological and cytogenetic
relationship, and it also opens up opportunity for leveraging
gene information with more readily accessible clinical data
(pathological images).

When designing a deep learning algorithm for digital
pathology, irrelevant regions leading to unreliable predic-
tion and the overwhelming data size causing computational
resource issues are two critical challenges. The learning
strategies for large pathological images are thus divided into
two categories based on the processing granularity: patch-
level and slide-level approaches. Patch-level algorithms often
rely on manually labeled patches from region of interests
(ROIs) and segmented the targeted patches for classifiers.
Several algorithms, including support vector machine and
convolutional neural network (CNN), have been applied
on segmented patches with only one or a few leukocytes
[5]. Eckardt et al. has also aggregated the predicted values
from patch-level models in an ensemble approach for the
prediction on a whole slide [4].

The direct slide-level algorithms attempt to automatically
perform prediction and identify important patches from entire
scan to avoid the manual segmentation at the same time.
Several multi-instance learning (MIL) based methods devel-
oped for breast, lung, and kidney images regarded patches
as instances which were aggregated in a bag (whole slide).
The aggregation was usually implemented as a differentiable
pooling layer. Attention mechanism has also been deployed
to improve MIL performance using the learned patch weights
for survival prediction [6]. Chen et al. have developed a
unified memory mechanism to reduce the memory usage in
whole-slide training [7]. Shao et al. have proposed a modified
Transformer to reduce model complexity and leverage patch
relationship for better MIL performance [8]. Although these
prior studies have attempted to model the whole slide by
reducing computational requirement for deep network train-
ing. There has not been a domain knowledge sensitive patch
selection with discrminative encoding approach.

In this study, we propose a process of selecting the impor-
tant patches from AML bone marrow images and encodes
with representation used for slide-level gene mutation pre-
diction. Specifically, we develop a coarse selection selector



Fig. 1. The overall framework consists of three parts, image preprocessing, discriminative patch selecting encoder and multi-instance transformer. We
denote the focus measure, cell coverage ratio, discriminative score of a patch as FM, CCR, and DS, respectively.

based on prior pathological knowledge. The patches are em-
bedded as representations using a patch encoder network that
is discriminatively trained to predict gene mutations using
each single patch. Then, we perform a fine-grained selection
based on the single-patch prediction output probability from
the patch encoder. The preserved gene discriminative patches
are finally aggregated by a TransMIL model for patient-level
gene prediction. With this coarse-to-fine selecting design, we
achieve 71.67%, 56.26%, and 56.34% F1-score and 81.97%,
66.54%, and 61.91% AUC for CEBPA, FLT3 and NPM1
gene prediction on an AML bone marrow image dataset.

II. METHODS

A. Database and Study Population

The data cohort in this study was collected from the Na-
tional Taiwan University Hospital1 and contained 386 bone
marrow smear slides from different patients. All patients had
gene testing for both FLT3 and NPM1 and 308 of them
had tests for CEBPA. The slide and patch distribution are
shown in Table I where the genes are labeled as 1 if mutated
and otherwise 0. A hematologist annotated 76 slides in a
3000x3000 downsampled scale using the Computer Vision
Annotation Tool (CVAT) for the ROIs. The CVAT allowed
the hematologist labeling a region as an included or excluded
region based on a general morphological pattern instead of
a cell-level delicate segmentation. These labeled ROIs were
used to train a patch pre-selector described in Section II-B.1
which avoided labeling the whole dataset.

B. Bone Marrow Smear Image Classification

Fig. 1 shows the overall framework which consists of
image preprocessing, discriminative patch selecting encoder
and multi-instance transformer.

1IRB: 201906018RINB

TABLE I
GENE MUTATION DISTRIBUTION IN THE DATASET. THE GENES ARE

LABELED AS 1 IF MUTATED AND OTHERWISE 0.

patient (slide) patch

Gene 0 1 total 0 1 total

CEBPA 257 51 308 25108 5056 30164
FLT3 304 82 386 29850 8064 37914
NPM1 315 71 386 30855 7059 37914

1) Image Preprocessing: In the preprocessing stage, we
segment the 20X magnified images by defining a valid color
range, (107, 12, 0) to (136, 255, 255) in hue, saturation,
lightness (HSV) dimensions. The color range specifies the
smear boundary from background. Then, we crop each image
into patches of size 512x512x3. The choice of high resolution
helps preserve details and sufficient number of candidates
for further gene-discriminative information extraction. Ad-
ditionally, we used patches from the 76 slides with labeled
ROI regions to train a CNN model and predicted whether to
include each patch or not. This model is named as “patch
pre-selector” that is used to rank the most appropriate patches
to be includes by sorting the prediction score (here, we take
the top 100 patches from each bone smear slide).

2) Discriminative Patch Selecting Encoder: In this sec-
tion, we introduce a coarse-to-fine selecting mechanism
along with a patch encoder to discriminatively preserve the
gene-related information in representations. The coarse-to-
fine selecting mechanism includes coarse selection rules and
a fine selection rule applied before and after the patch
encoder network. The coarse selection rules remove low
quality patches which are constructed by hematologists’ prior
knowledge. We detected blur patches using a focus measure
(FM) value that computes variations of the Laplacian; it
measures the second derivatives for intense change of pixels.
If the focus measure was lower than a threshold, we removed
the patch for blurriness. We defined another rule, cell cover-
age ratio (CCR), which removed the patches with very few



TABLE II
RESULTS OF GENE PREDICTION USING DIFFERENT ALGORITHMS WITH BEST PERFORMED TWO VALUES ON EACH METRIC HIGHLIGHTED IN BOLD.

Gene CEBPA FLT3 NPM1

Metric(%) UAR F1 ACC AUC UAR F1 ACC AUC UAR F1 ACC AUC

InceptionV3+AvgPool 71.65 66.09 76.30 79.67 57.80 54.03 60.88 61.49 55.44 51.01 59.33 58.81
Xception+AvgPool 72.24 66.14 75.97 80.63 56.30 53.17 60.62 61.01 57.93 53.45 66.06 63.94
Xception+AMIL 64.98 61.70 74.35 69.87 58.30 56.61 66.58 62.67 56.36 55.82 71.50 60.74
Xception(Fixed)+TransMIL 53.86 50.14 61.04 58.19 56.22 51.49 56.99 60.32 51.02 50.83 68.13 53.27
Xception+TransMIL 71.63 68.18 80.19 80.95 59.42 56.88 65.54 61.07 57.68 54.41 64.77 59.10
GDMIL 73.97 71.67 82.79 81.97 61.29 56.26 62.18 66.54 58.43 56.34 68.65 61.91

cells by computing the area with stained color. The low CCR
indicates that rare nucleated cells are in the patch.

After the coarse selection, we built a “patch encoder”
to embed gene mutation related information into a latent
space by a deep Xception network. The Xception model was
pretrained on ImageNet dataset and we performed transfer
learning using patch data downsampled to a class-balanced
condition. The learned patch encoder could estimate patch-
level gene mutation prediction scores, and we preserved the
patches in the training set which were correctly predicted
with the prediction scores higher than a discriminative score
(DS) threshold. Therefore, the patch encoder was further
retrained by the patches that could better describe the
pathological characteristics for gene mutations in a high
confidence. We extracted the latent representation of each
patch for the following multi-instance learning.

3) Multi-Instance Transformer: For a set of N patients
passed through the selection described in Section II-B.2, the
whole slide images Xi where i = 1, ..., N correspond to
the binary gene mutation labels Yi. With the patch encoder,
a bag of patches Xi = {xi,1, xi,2, ..., xi,T } ∈ RT×h×w×c

from a patient were transformed as hidden representations
Hi = {hi,1, hi,2, ..., hi,T } ∈ RT×d, where T is the number
of patches for the patient, h, w and c are the height, width
and channel number of a patch, d is the dimension of a
patch representation. We proposed to use a transformer based
correlated multiple instance learning (TransMIL) approach
[8] to aggregate varied number of patches in a bag and
therefore perform gene mutation prediction on a patient level.
The TransMIL firstly transformed a representation concate-
nating Hi and a class token Hc

i to H l
i ∈ R(T+1)×d using

a multi-head attention layer and reshaped the representation
of H l

i except the class token dimension as a matrix Hf
i ∈

R
√
T×

√
T×d. Multiple convolutional layers with different

kernel sizes were applied to extract the relations between
the patches and resulted in a matrix Hf ′

i ∈ R
√
T×

√
T×d. We

then obtained relationship embedded representations Hp
i ∈

R(T+1)×d by flattening Hf ′

i and concatenated Hp
i with the

class token representation for another multi-head attention
layer transformation. Finally, we used the class token Hc′

i ∈
R1×d extracted from the derived H l′

i ∈ R(T+1)×d in a fully-
connection network to predict gene mutation Ŷi.

C. Experimental Analysis

To evaluate our pre-processing stage (pre-selector), we
sampled 882 gathered patch images evenly distributed from

96 patients for hematologists to rate. The hematologists
manually annotated theses sampled patches as abnormal,
normal, and unknown based on their experiences. Our of
these 882 sample patches (output from our pre-selector),
there are 695 patches labeled as abnormal (78.80%), 187
as unknown patches (21.20%), and none normal patches
(0%). This analysis demonstrates out of all the automatically
selected samples to be included in our model learning, about
80% of them are deemed important, i.e., with pathological
forms of being abnormal.

The aim of our proposed framework is to perform a binary
gene mutation prediction task. The targeted gene mutation
labels were CEBPA, FLT3, Nucleophosmin (NPM1). We
carried out a 5-fold cross-validation experiments (60% for
training, 20% for validation, and 20% for testing) in each
fold. The model hyper-parameters were determined by grid-
search for the best validation performance. The patch en-
coder was trained using weighted cross-entropy loss, Adam
optimizer, a learning rate as 1e-3 and a batch size as 16.
For transMIL, cross-entropy loss is optimized by Lookahead
optimizer with a learning rate of 2e-4 and a batch size of 1.
The focus measure (FM) threshold, cell coverage ratio (CCR)
threshold, and discriminative score (DS) threshold described
in Section II-B.2 are set to 50, 0.2, and 0.6, respectively.

1) Exp I: Comparison of patch encoder and MIL ap-
proaches: Four metrics including UAR, unweighted f1 score
(F1), accuracy (ACC), and area under the ROC curve (AUC),
are used to evaluate the following models.

• InceptionV3+AvgPool: using the InceptionV3 [9] as
the patch encoder and aggregating patches by average
pooling

• Xception+AvgPool: replacing InceptionV3+AvgPool
with Xception [10] for the patch encoder

• Xception+AMIL: using an Attention-based MIL ap-
proach [11] for patch aggregation

• Xception(Fixed)+TransMIL: using fixed pre-trained
Xception model as the patch encoder and a TransMIL
approach [8] for patch aggregation

• Xception+TransMIL: Our proposed framework without
discriminative patch selection mechanism

• GDMIL: Our proposed framework denoted as Gene-
Discriminative MIL

2) Exp II: Analysis of different selecting factors: In this
section, we aim to investigate the effects of different factors
to the gene mutation prediction task. The factors contain
parameters in the coarse selection, fine selection, and bag



TABLE III
RESULT ANALYSES ON SELECTING FACTORS IN TERMS OF UAR.

Gene CEPBA FLT3 NPM1

GDMIL 73.97 61.29 58.43

Coarse Selection
FM > 60 71.44 62.66 60.23

CCR > 0.3 72.06 57.59 57.40
Non-Boundary 76.17 60.10 56.93

Fine Selection DS > 0.7 74.77 58.33 58.48

Bag Order Spatial 73.58 60.06 60.38

order of TransMIL. For the coarse selection, prior knowledge
based factors include different thresholds of blurriness (FM),
thresholds of cell coverage (CCR), and an additional removal
of patches close to the smear boundary. For the fine selection,
we increase discriminative scores (DS) to examine the results
with higher gene-related confidence but fewer patches. We
also reshape patches by spatial order for TransMIL.

III. RESULTS

In this study, we compare to different slide learning
algorithms and the results are shown in Table II. We observe
that our proposed GDMIL consistently outperforms the other
approaches across all the metrics (73.97% UAR, 71.67% F1,
82.79% ACC, and 81.97% AUC) for CEBPA gene mutation
prediction. The 61.29% UAR and 66.54% AUC for FLT3
and the 58.43% UAR and 56.34% F1 for NPM1 using
GDMIL are also the highest results. The two strong baselines
fine-tuning from the InceptionV3 and Xception pretrained
networks for the patch encoder obtain 71.65%, 57.80%, and
55.44% UAR (InceptionV3+AvgPool) and 72.24%, 56.30%,
and 57.93% UAR (Xception+AvgPool) for CEBPA, FLT3,
and NPM1. These two approaches can effectively capture
characteristics in each patch. The state-of-the-art Xcep-
tion+TransMIL modifying the attention mechanism in AMIL,
the derived UAR are 71.63%, 59.42%, and 57.68% which
result in an improvement of 6.65%, 1.12%, 1.32% for
CEBPA, FLT3, and NPM1 compared to Xception+AMIL.
The original paper used a pretrained patch encoder without
fine-tuning (Xception(Fixed)+TransMIL) which could deteri-
orate the performance due to the domain gap. Our proposed
GDMIL using additional selection mechanism attains further
improvement compared to Xception+TransMIL with 2.34%,
1.87%, and 0.75% UAR.

The analysis results in terms of UAR are shown in Table
III. We obtain improved UAR (62.66% and 60.23%) for
FLT3 and NPM1 by increasing the FM threshold from 50 to
60. Removing 15% patches close to the boundary can signifi-
cantly improve the performance to 76.17% UAR for CEBPA
while stricter CCR threshold does not add improvement.
Increasing DS threshold from 0.6 to 0.7 in the fine selection
benefits the prediction of CEBPA. Organizing patches based
on spatial order in TransMIL helps the performance achieve
60.38% UAR for NPM1.

IV. DISCUSSIONS

Our experiment results show an encouraging coarse-to-fine
patch selection scheme to incorporate both human knowledge

and discriminative learning in the gene prediction task. Our
proposed GDMIL outperforms the other algorithms with
the advantage of selected patches. We find that transfer
learning is essential in the comparison to the state-of-the-
art approach, Xception(Fixed)+TransMIL, using a fixed patch
encoder. Intriguing observations are revealed in Exp II that
the mutation of CEBPA is sensitive to redundant patches,
such as locating at smear boundary or less discriminative in
the patch encoder. Multiple factors affect the performance of
NPM1 mutation prediction while most do not affect FLT3.

V. CONCLUSIONS
In this study, we propose a framework to select dis-

criminative patches for multi-instance gene prediction. The
more gene-related patches and the better patch representation
learning improve the performance on three different gene
mutations. We observe that different gene mutation would
be sensitive to different factors in the selection process. In
the future work, we will expand the dataset and examine the
algorithms to contribute for different diseases and genes.
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